Multiagent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers ({MARLIN}-{ATSC}): Methodology and Large-Scale Application on Downtown Toronto

Multiagent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers ({MARLIN}-{ATSC}): Methodology and Large-Scale Application on Downtown Toronto

Population is steadily increasing worldwide, resulting in intractable traffic congestion in dense urban areas. Adaptive traffic signal control (ATSC) has shown strong potential to effectively alleviate urban traffic congestion by adjusting signal timing plans in real time in response to traffic fluctuations to achieve desirable objectives (e.g., minimize delay). Efficient and robust ATSC can be designed using a multiagent reinforcement learning (MARL) approach in which each controller (agent) is responsible for the control of traffic lights around a single traffic junction. Applying MARL approaches to the ATSC problem is associated with a few challenges as agents typically react to changes in the environment at the individual level, but the overall behavior of all agents may not be optimal. This paper presents the development and evaluation of a novel system of multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC). MARLIN-ATSC offers two possible modes