Dr. Phil Winder

Reinforcement Learning

Industrial Applications with Intelligent Agents

Become a Reinforcement Learning Ninja

Written from the perspective of an industrial engineer, this book has everything you need to know to get started with reinforcement learning.

RL Algorithms

Learn about all major reinforcement learning algorithms in one place. This book covers all major types of RL algorithm.

Industrial Applications

Packed full of industrial use cases, you won’t be short of ideas. All examples are real (no hypotheticals here!) and have accompanying code.

Practical Advice

Complex models don’t need to be complicated. You will understand the pros and cons before accidents happen.

Experiments

Intuitive experiments to demonstrate the how and the why.

Easy Progression

Clear evolution of techniques from A/B testing to the state of the art.

Keep it Simple

Simple, concise language that packs in more content compared to other RL books.

Book Description

From the back of the book.

Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to perform the reinforcement process that allows a machine to learn by itself.

Author Dr. Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You’ll explore the current state of RL, focusing on industrial applications, and learn numerous algorithms, frameworks, and environments. This is no cookbook—it doesn’t shy away from math and expects familiarity with ML.

  • Learn what RL is and how the algorithms help solve problems
  • Become grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learning
  • Dive deep into value methods and policy gradient methods
  • Apply advanced RL implementations such as meta learning, hierarchical learning, evolutionary algorithms, and imitation learning
  • Understand cutting-edge deep RL algorithms including Rainbow, PPO, TD3, SAC, and more
  • Get practical examples through the accompanying Git repository

Dr. Phil Winder

- CEO, Winder Research

Dr. Phil Winder is a multidisciplinary Engineer who creates data-driven software products. His work incorporates Data Science, Cloud-Native and traditional software development using a range of languages and tools.

Phil is the CEO of Winder Research, a Data Science consultancy in the UK, which operates throughout Europe delivering training, development and consultancy services. He has Ph.D. and a Masters degree in Electronics from the University of Hull, UK.